2 resultados para Glutamine

em Repositorio Institucional de la Universidad de Málaga


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Cerebrospinal fluid accumulation in hydrocephalus produces an elevation of intraventricular pressure with pathological consequences on the periventricular brain parenchyma including ischemia, oedema, oxidative stress, and accumulation of metabolic waste products. Here we studied in the hyh mouse, an animal model of congenital hydrocephalus, the role of reactive astrocytes in this clinical degenerative condition. Materials and Methods Wild type and hydrocephalic hyh mice at 30 days of postnatal age were used. Three metabolites related to the oxidative and neurotoxic conditions were analysed in ex vivo samples (glutathione, glutamine and taurine) using High Resolution Magic Angle Spinning (HR-MAS). Glutathione synthetase and peroxidase, glutamine synthetase, kidney-type glutaminase (KGA), and taurine/taurine transporter were immunolocated in brain sections. Results Levels of the metabolites were remarkably higher in hydrocephalic conditions. Glutathione peroxidase and synthetase were both detected in the periventricular reactive astrocytes and neurons. Taurine was mostly found free in the periventricular parenchyma and in the reactive astrocytes, and the taurine transporter was mainly present in the neurons located in such regions. Glutamine synthetase was found in reactive astrocytes. Glutaminase was also detected in the reactive astrocytes and in periventricular neurons. These results suggest a possible protective response of reactive astrocytes against oxidative stress and neurotoxic conditions. Conclusions Astrocyte reaction seems to trigger an anti-oxidative and anti-neurotoxic response in order to ameliorate pathological damage in periventricular areas of the hydrocephalic mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interest in carbon nanomaterials with high transparency and electrical conductivity has grown within the last decade in view of a wide variety of applications, including biocompatible sensors, diagnostic devices and bioelectronic implants. The aim of this work is to test the biocompatibility of particular nanometer-thin nanocrystalline glass-like carbon films (NGLC), a disordered structure of graphene flakes joined by carbon matrix (Romero et al., 2016). We used a cell line (SN4741) from substantia nigra dopaminergic cells derived from transgenic mouse embryo cells (Son et al., 1999). Some cells were cultured on top of NGLC films (5, 20 and 80 nm) and other with NGLC nanoflakes (approx. 5-10 mm2) in increasing concentrations: 1, 5, 10, 20 and 50 μg/ml, during 24 h, 3 days and 7 days. Cells growing in normal conditions were defined under culture with DMEM supplemented with 10% FCS, Glucose (0,6%), penicillin-streptomycin (50U/ml) and L-glutamine (2mM) at 5%CO2 humidified atmosphere. Nanoflakes were resuspended in DMEM at the stock concentration (2 g/l). The experiments were conducted in 96 well plates (Corning) using 2500 cells per well. For MTT analysis, the manufacturer recommendations were followed (Roche, MTT kit assay): a positive control with a 10% Triton X-100 treatments (15 minutes) and a negative control without neither Triton X-100 nor NGLC. As apoptosis/necrosis assay we used LIVE/DEAD® Viability/Cytotoxicity Assay Kit (Invitrogen). In a separate experiment, cells were cultured on top of the NGLC films for 7 days. Primary antibodies: anti-synaptophysin (SYP, clone SY38, Chemicon) and goat anti-GIRK2 (G-protein-regulated inward-rectifier potassium channel 2 protein) (Abcom) following protocol for immunofluorescence. WB for proteins detection performed with a polyclonal anti-rabbit proliferating cell nuclear antigen (PCNA). Results demonstrated the biocompatibility with different concentration of NGLC varying the degree of survival from a low concentration (1 mg/ml) in the first 24 h to high concentrations (20-50 g/ml) after 7 days as it is corroborated by the PCNA analysis. Cells cultured on top of the film showed after 7 days axonal-like alignment and edge orientation as well as net-like images. Neuronal functionality was demonstrated to a certain extent through the analysis of coexistence between SYP and GIRK2. In conclusion, this nanomaterial could offer a powerful platform for biomedical applications such as neural tissue engineering